
Expecting the Unexpected: Surprises on the Hunt for
NonArchimedean Fractals

Tristan Tager
with Annie Carter, Daniel Lithio, and Bob Niichel

Indiana University at Bloomington
University of California at Berkeley

Tristan Tager with Annie Carter, Daniel Lithio, and Bob Niichel (IUB & UCB)NonArchimedean Surprises 1 / 20



The Metric Fractal Machine

1 Any contraction on a complete metric space has a unique fixed point

2 The hyperspace of compact sets forms a metric space

3 This hyperspace inherits completeness

4 The continuous image of a compact set is compact

5 Contractions are continuous

6 The finite union of compact sets is compact

7 A finite collection of contractions forms a self-map on the hyperspace

8 The above map is a contraction on the hyperspace

9 Any finite collection of contractions defined on a complete metric
space has a unique fixed compact set
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Motivating the Hunt!

1 Abstract goal: understand how to analyze nonarchimedean spaces

2 Generalizations need guiding examples, or they can generalize badly
or misuse certain conditions

3 Application: generalize fractal theory, and provide strictly
non-metrizable fractals

Tristan Tager with Annie Carter, Daniel Lithio, and Bob Niichel (IUB & UCB)NonArchimedean Surprises 3 / 20



Motivating the Hunt!

1 Abstract goal: understand how to analyze nonarchimedean spaces

2 Generalizations need guiding examples, or they can generalize badly
or misuse certain conditions

3 Application: generalize fractal theory, and provide strictly
non-metrizable fractals

Tristan Tager with Annie Carter, Daniel Lithio, and Bob Niichel (IUB & UCB)NonArchimedean Surprises 3 / 20



Motivating the Hunt!

1 Abstract goal: understand how to analyze nonarchimedean spaces

2 Generalizations need guiding examples, or they can generalize badly
or misuse certain conditions

3 Application: generalize fractal theory, and provide strictly
non-metrizable fractals

Tristan Tager with Annie Carter, Daniel Lithio, and Bob Niichel (IUB & UCB)NonArchimedean Surprises 3 / 20



Exploring the Terrain

We want to generalize contractions. Start with maps that intuitively
contract, but are not metric-space contractions.

1 Dividing by 2 “should” always be a contraction.
2 A natural context is ordered fields.

The field L
1 The field of Laurent polynomials with coefficients in R
2 Linearly ordered as follows:

∑∞
i=n aix

i > 0 when the leading
coefficient is positive.

3 The induced topology is second countable and regular, and therefore
metrizable.

4 Due to the linear order, can view the field in terms of levels.

The field of hyperreals, ∗R
1 Somewhat more complicated.
2 Linearly ordered, but not second countable, and therefore not

metrizable.
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Committing to the Hunt

Field-metric spaces

Let F be an ordered field. An F -metric space is a set X together with a
function d : X × X → F≥0, satisfying the usual metric space axioms, but
with F in place of R.

Beta Spaces

A beta space is a triple (X ,R, β) where X is the underlying set, R is the
set of “radius values”, and β : X × R → P(X ) satisfies

1 For all x ∈ X and r ∈ R, x ∈ β(x , r)

2 Every r ∈ R has a swing value – an s ∈ R such that, if x ∈ β(y , s),
then β(y , s) ⊂ β(x , r)
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Narrowing Things Down

Contractions

A contraction is a map f : X → X together with a positive integer N, such
that

1 f (β(x , r)) ⊂ β (f (x), r)

2 Every r ∈ R has a proper swing value sr such that
f N (β(x , r)) ⊂ β

(
f N(x), sr

)

What maps are contractions?

What conditions do we need to guarantee that contractions have
unique fixed points?
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Contractions in the Wild

What maps are contractions?

Metric Spaces
1 Metric space contractions

Ultrametric Spaces
1 Weak contractions

Field-metric Spaces
1 Maps f : X → X where there is an r ∈ [0, 1) such that
ρ(f (x), f (y)) ≤ r · ρ(x , y)
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Completeness: a Grim Truth

Beta spaces are generally not second countable, and so we need a
generalization of sequences that can handle this relaxed structure.

Nets: the new Sequences

A net is a collection of points, indexed on a a directed set.

The broader notions of Cauchy and complete fall out immediately.
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The Completeness We Deserve

Surprise #1!

Completeness is the wrong condition.

Spherical completeness is also the wrong condition.
1 Spherical completeness is overly sensitive to the properties of the balls
2 It’s often difficult to prove that a space is spherically complete
3 It isn’t necessarily true that a hyperspace inherits spherical

completeness
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The Completeness We Need

We can weaken the notions of Cauchy and converge using levels.

Level Completeness

A space is said to be level complete if for every (rk), every (rk)-Cauchy net
(rk)-converges.

The idea here is that we need to consider sequences (or nets) that are
Cauchy with respect to a certain measuring stick. This measuring stick is
given by the “swing net”, (rk)k∈I , where j < k implies that rk is a swing
value for rj .
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value for rj .
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The Upshot of Level Completeness

Spherical completeness implies level completeness

Level completeness doesn’t require that balls be closed, and thus is a
true generalization of metric space completeness

It is usually straightforward to show that a space is level complete

It is easy to show that the hyperspace inherits level completeness

Every space has a natural level completion.

There is a very nice characterization of level complete ordered fields
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Getting to the Fixed Point

The Contraction Mapping Theorem

Let (X ,R, β) be level complete, ordered, and inclusive. Then any
contraction f : X → X has a unique fixed point.

Ordered means that the preorder on the set of radius values is a linear
order

Inclusive means that for any two points x , y ∈ X , y is in an “efficient”
ball about x , where the ball of half-radius about x excludes y

Conjecture: we only need level completeness for this theorem to be true.
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The Role of Topology

Recall: the field L is metrizable! The metric is induced by the norm∣∣∣∣∣
∞∑
i=n

aix
i

∣∣∣∣∣ = 2−n

Should we use the L-metric structure, or the beta space structure?

The function f (y) = y/2 is not a contraction in the metric space
setting.

Surprise #2!

Topology is the wrong perspective for contractions, as
homeomorphisms don’t preserve contractions.

Uniform topology is also the wrong perspective for contractions.
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Why Beta Spaces?

The most popular generalizations of metric spaces, and the most common
venues for generalized fixed-point theory, are uniform spaces and gauge
spaces.

What is the topological relationship between uniform spaces, gauge
spaces, and beta spaces?

What is the geometric relationship between these spaces?

How do contractions work in gauge spaces and uniform spaces?

Surprise #3!

Gauge spaces cannot describe the geometry of “most” ordered fields

Uniform spaces are wholly unsuitable for contractions
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Back to Where We Started

1 Any contraction on a complete metric space has a unique fixed point

2 The hyperspace of compact sets forms a metric space

3 This hyperspace inherits completeness

4 The continuous image of a compact set is compact

5 Contractions are continuous

6 The finite union of compact sets is compact

7 A finite collection of contractions forms a self-map on the hyperspace

8 The above map is a contraction on the hyperspace

9 Any finite collection of contractions defined on a complete metric
space has a unique fixed compact set
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The Wild Hunt: Where are the Examples?

Start by finding a nice compact set

A set is compact if and only if it is complete and totally bounded

The condition of completeness is suspicious

What sets in L are totally bounded?

Surprise #4!

In L, compact sets are always countable.
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First it Gets Worse

Theorem

In any fully nonarchimedean space, compact sets are countable.
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Then it Gets Better

We need a generalization of compactness!

A level compact set C has the property that every (rk)-open cover
has a finite subcover.

Theorem

A space is level compact if and only if it is level complete and level
bounded.
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Grab Your Elephant Gun

1 Any contraction on a complete metric space has a unique fixed point

2 The hyperspace of compact sets forms a metric space

3 This hyperspace inherits completeness

4 The continuous image of a compact set is compact

5 Contractions are continuous

6 The finite union of compact sets is compact

7 A finite collection of contractions forms a self-map on the hyperspace

8 The above map is a contraction on the hyperspace

9 Any finite collection of contractions defined on a complete metric
space has a unique fixed compact set
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The End
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